
Some background on information theory

These notes are based on a section of a full biophysics course which I teach at Princeton, aimed
at PhD students in Physics. In the current organization, this section includes an account of
Laughlin’s ideas of optimization in the fly retina, as well as some pointers to topics in the next
lecture. Gradually the whole course is being turned into a book, to be published by Princeton
University Press. I hope this extract is useful in the context of our short course, and of course I
would be grateful for any feedback.

The generation of physicists who turned to biologi-
cal phenomena in the wake of quantum mechanics noted
that to understand life one has to understand not just
the flow of energy (as in inanimate systems) but also the
flow of information. There is, of course, some difficulty
in translating the colloquial notion of information into
something mathematically precise. Indeed, almost all
statistical mechanics textbooks note that the entropy of
a gas measures our lack of information about the micro-
scopic state of the molecules, but often this connection is
left a bit vague or qualitative. Shannon proved a theorem
that makes the connection precise [Shannon 1948]: en-
tropy is the unique measure of available information con-
sistent with certain simple and plausible requirements.
Further, entropy also answers the practical question of
how much space we need to use in writing down a de-
scription of the signals or states that we observe. This
leads to a notion of efficient representation, and in this
section of the course we’ll explore the possibility that bi-
ological systems in fact form efficient representations of
relevant information.

I. ENTROPY AND INFORMATION

Two friends, Max and Allan, are having a conversa-
tion. In the course of the conversation, Max asks Allan
what he thinks of the headline story in this morning’s
newspaper. We have the clear intuitive notion that Max
will ‘gain information’ by hearing the answer to his ques-
tion, and we would like to quantify this intuition. Fol-
lowing Shannon’s reasoning, we begin by assuming that
Max knows Allan very well. Allan speaks very proper
English, being careful to follow the grammatical rules
even in casual conversation. Since they have had many
political discussions Max has a rather good idea about
how Allan will react to the latest news. Thus Max can
make a list of Allan’s possible responses to his question,
and he can assign probabilities to each of the answers.
From this list of possibilities and probabilities we can
compute an entropy, and this is done in exactly the same
way as we compute the entropy of a gas in statistical me-
chanics or thermodynamics: If the probability of the nth

possible response is pn, then the entropy is

S = −
∑

n

pn log2 pn bits. (1)

The entropy S measures Max’s uncertainty about

what Allan will say in response to his question. Once
Allan gives his answer, all this uncertainty is removed—
one of the responses occurred, corresponding to p = 1,
and all the others did not, corresponding to p = 0—so
the entropy is reduced to zero. It is appealing to equate
this reduction in our uncertainty with the information
we gain by hearing Allan’s answer. Shannon proved that
this is not just an interesting analogy; it is the only defi-
nition of information that conforms to some simple con-
straints.

A. Shannon’s uniqueness theorem

To start, Shannon assumes that the information
gained on hearing the answer can be written as a func-
tion of the probabilities pn.1 Then if all N possible an-
swers are equally likely the information gained should be
a monotonically increasing function of N . The next con-
straint is that if our question consists of two parts, and if
these two parts are entirely independent of one another,
then we should be able to write the total information
gained as the sum of the information gained in response
to each of the two subquestions. Finally, more general
multipart questions can be thought of as branching trees,
where the answer to each successive part of the question
provides some further refinement of the probabilities; in
this case we should be able to write the total information
gained as the weighted sum of the information gained at
each branch point. Shannon proved that the only func-
tion of the {pn} consistent with these three postulates—
monotonicity, independence, and branching—is the en-
tropy S, up to a multiplicative constant.

To prove Shannon’s theorem we start with the case
where all N possible answers are equally likely. Then the
information must be a function of N , and let this func-
tion be f(N). Consider the special case N = km. Then
we can think of our answer—one out of N possibilities—
as being given in m independent parts, and in each part
we must be told one of k equally likely possibilities.2

1 In particular, this ‘zeroth’ assumption means that we must take
seriously the notion of enumerating the possible answers. In
this framework we cannot quantify the information that would
be gained upon hearing a previously unimaginable answer to our
question.

2 If N = km, then we can specify each possible answer by an m–
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But we have assumed that information from indepen-
dent questions and answers must add, so the function
f(N) must obey the condition

f(km) = mf(k). (2)

It is easy to see that f(N) ∝ logN satisfies this equa-
tion. To show that this is the unique solution, Shannon
considers another pair of integers ` and n such that

km ≤ `n ≤ km+1, (3)

or, taking logarithms,

m

n
≤ log `

log k
≤ m

n
+

1
n
. (4)

Now because the information measure f(N) is monoton-
ically increasing with N , the ordering in Eq. (3) means
that

f(km) ≤ f(`n) ≤ f(km+1), (5)

and hence from Eq. (2) we obtain

mf(k) ≤ nf(`) ≤ (m+ 1)f(k). (6)

Dividing through by nf(k) we have

m

n
≤ f(`)
f(k)

≤ m

n
+

1
n
, (7)

which is very similar to Eq. (4). The trick is now that
with k and ` fixed, we can choose an arbitrarily large
value for n, so that 1/n = ε is as small as we like. Then
Eq. (4) is telling us that∣∣∣∣mn − log `

log k

∣∣∣∣ < ε, (8)

and hence Eq. (7) for the function f(N) can similarly
be rewritten as ∣∣∣∣mn − f(`)

f(k)

∣∣∣∣ < ε, or (9)∣∣∣∣ f(`)
f(k)

− log `
log k

∣∣∣∣ ≤ 2ε, (10)

so that f(N) ∝ logN as promised.3
We are not quite finished, even with the simple case

of N equally likely alternatives, because we still have
an arbitrary constant of proportionality. We recall that

place (‘digit’ is the wrong word for k 6= 10) number in base k.
The m independent parts of the answer correspond to specifying
the number from 0 to k − 1 that goes in each of the m places.

3 If we were allowed to consider f(N) as a continuous function,
then we could make a much simpler argument. But, strictly
speaking, f(N) is defined only at integer arguments.

the same issue arises is statistical mechanics: what are
the units of entropy? In a physical chemistry course you
might learn that entropy is measured in “entropy units,”
with the property that if you multiply by the absolute
temperature (in Kelvin) you obtain an energy in units
of calories per mole; this happens because the constant
of proportionality is chosen to be the gas constant R,
which refers to Avogadro’s number of molecules.4 In
physics courses entropy is often defined with a factor
of Boltzmann’s constant kB , so that if we multiply by
the absolute temperature we again obtain an energy (in
Joules) but now per molecule (or per degree of freedom),
not per mole. In fact many statistical mechanics texts
take the sensible view that temperature itself should be
measured in energy units—that is, we should always talk
about the quantity kBT , not T alone—so that the en-
tropy, which after all measures the number of possible
states of the system, is dimensionless. Any dimension-
less proportionality constant can be absorbed by choos-
ing the base that we use for taking logarithms, and in
information theory it is conventional to choose base two.
Finally, then, we have f(N) = log2N . The units of this
measure are called bits, and one bit is the information
contained in the choice between two equally likely alter-
natives.

Ultimately we need to know the information conveyed
in the general case where our N possible answers all
have unequal probabilities. To make a bridge to this
general problem from the simple case of equal probabil-
ities, consider the situation where all the probabilities
are rational, that is

pn =
kn∑
m km

, (11)

where all the kn are integers. It should be clear that if
we can find the correct information measure for rational
{pn} then by continuity we can extrapolate to the general
case; the trick is that we can reduce the case of rational
probabilities to the case of equal probabilities. To do
this, imagine that we have a total of Ntotal =

∑
m km

possible answers, but that we have organized these into
N groups, each of which contains kn possibilities. If
we specified the full answer, we would first tell which
group it was in, then tell which of the kn possibilities
was realized. In this two step process, at the first step
we get the information we are really looking for—which
of the N groups are we in—and so the information in

4 Whenever I read about entropy units (or calories, for that mat-
ter) I imagine that there was some great congress on units at
which all such things were supposed to be standardized. Of
course every group has its own favorite nonstandard units. Per-
haps at the end of some long negotiations the chemists were
allowed to keep entropy units in exchange for physicists contin-
uing to use electron Volts.
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the first step is our unknown function,

I1 = I({pn}). (12)

At the second step, if we are in group n then we will gain
log2 kn bits, because this is just the problem of choosing
from kn equally likely possibilities, and since group n
occurs with probability pn the average information we
gain in the second step is

I2 =
∑

n

pn log2 kn. (13)

But this two step process is not the only way to compute
the information in the enlarged problem, because, by
construction, the enlarged problem is just the problem
of choosing from Ntotal equally likely possibilities. The
two calculations have to give the same answer, so that

I1 + I2 = log2(Ntotal), (14)

I({pn}) +
∑

n

pn log2 kn = log2(
∑
m

km). (15)

Rearranging the terms, we find

I({pn}) = −
∑

n

pn log2

(
kn∑
m km

)
(16)

= −
∑

n

pn log2 pn. (17)

Again, although this is worked out explicitly for the case
where the pn are rational, it must be the general an-
swer if the information measure is continuous. So we are
done: the information obtained on hearing the answer
to a question is measured uniquely by the entropy of the
distribution of possible answers.

If we phrase the problem of gaining information from
hearing the answer to a question, then it is natural to
think about a discrete set of possible answers. On the
other hand, if we think about gaining information from
the acoustic waveform that reaches our ears, then there
is a continuum of possibilities. Naively, we are tempted
to write

Scontinuum = −
∫
dxP (x) log2 P (x), (18)

or some multidimensional generalization. The difficulty,
of course, is that probability distributions for continuous
variables [like P (x) in this equation] have units—the dis-
tribution of x has units inverse to the units of x—and
we should be worried about taking logs of objects that
have dimensions. Notice that if we wanted to compute
a difference in entropy between two distributions, this
problem would go away. This is a hint that only entropy
differences are going to be important.5

5 The problem of defining the entropy for continuous variables is

B. Writing down the answers

In the simple case where we ask a question and there
are exactly N = 2m possible answers, all with equal
probability, the entropy is just m bits. But if we make
a list of all the possible answers we can label each of
them with a distinct m–bit binary number: to specify
the answer all I need to do is write down this number.
Note that the answers themselves can be very complex:
different possible answers could correspond to lengthy
essays, but the number of pages required to write these
essays is irrelevant. If we agree in advance on the set
of possible answers, all I have to do in answering the
question is to provide a unique label. If we think of
the label as a ‘codeword’ for the answer, then in this
simple case the length of the codeword that represents
the nth possible answer is given by `n = − log2 pn, and
the average length of a codeword is given by the entropy.

It will turn out that the equality of the entropy and
the average length of codewords is much more general
than our simple example. Before proceding, however,
it is important to realize that the entropy is emerging
as the answer to two very different questions. In the
first case we wanted to quantify our intuitive notion of
gaining information by hearing the answer to a question.
In the second case, we are interested in the problem of
representing this answer in the smallest possible space.
It is quite remarkable that the only way of quantifying
how much we learn by hearing the answer to a question
is to measure how much space is required to write down
the answer.

Clearly these remarks are interesting only if we can
treat more general cases. Let us recall that in statistical
mechanics we have the choice of working with a micro-
canonical ensemble, in which an ensemble of systems is

familiar in statistical mechanics. In the simple example of an
ideal gas in a finite box, we know that the quantum version of
the problem has a discrete set of states, so that we can compute
the entropy of the gas as a sum over these states. In the limit
that the box is large, sums can be approximated as integrals,
and if the temperature is high we expect that quantum effects
are negligible and one might naively suppose that Planck’s con-
stant should disappear from the results; we recall that this is not
quite the case. Planck’s constant has units of momentum times
position, and so is an elementary area for each pair of conjugate
position and momentum variables in the classical phase space;
in the classical limit the entropy becomes (roughly) the loga-
rithm of the occupied volume in phase space, but this volume
is measured in units of Planck’s constant. If we had tried to
start with a classical formulation (as did Boltzmann and Gibbs,
of course) then we would find ourselves with the problems of
Eq. (18), namely that we are trying to take the logarithm of a
quantity with dimensions. If we measure phase space volumes
in units of Planck’s constant, then all is well. The important
point is that the problems with defining a purely classical en-
tropy do not stop us from calculating entropy differences, which
are observable directly as heat flows, and we shall find a similar
situation for the information content of continuous (“classical”)
variables.
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distributed uniformly over states of fixed energy, or with
a canonical ensemble, in which an ensemble of systems
is distributed across states of different energies accord-
ing to the Boltzmann distribution. The microcanonical
ensemble is like our simple example with all answers hav-
ing equal probability: entropy really is just the log of the
number of possible states. On the other hand, we know
that in the thermodynamic limit there is not much differ-
ence between the two ensembles. This suggests that we
can recover a simple notion of representing answers with
codewords of length `n = − log2 pn provided that we can
find a suitbale analog of the thermodynamic limit.

Imagine that instead of asking a question once, we ask
it many times. As an example, every day we can ask the
weatherman for an estimate of the temperature at noon
the next day. Now instead of trying to represent the an-
swer to one question we can try to represent the whole
stream of answers collected over a long period of time.
Thus instead of a possible answer being labelled n, possi-
ble sequences of answers are labelled by n1n2 · · · nN . Of
course these sequences have probabilites P (n1n2 · · · nN ),
and from these probabilities we can compute an entropy
that must depend on the length of the sequence,

S(N) = −
∑
n1

∑
n2

· · ·
∑
nN

P (n1n2 · · · nN ) log2 P (n1n2 · · · nN ). (19)

Notice we are not assuming that successive questions
have independent answers, which would correspond to
P (n1n2 · · · nN ) =

∏N
i=1 pni

.
Now we can draw on our intuition from statistical me-

chanics. The entropy is an extensive quantity, which
means that as N becomes large the entropy should be
proportional to N ; more precisely we should have

lim
N→∞

S(N)
N

= S, (20)

where S is the entropy density for our sequence in the
same way that a large volume of material has a well
defined entropy per unit volume.

The equivalence of ensembles in the thermodynamic
limit means that having unequal probabilities in the
Boltzmann distribution has almost no effect on anything
we want to calculate. In particular, for the Boltzmann
distribution we know that, state by state, the log of the
probability is the energy and that this energy is itself
an extensive quantity. Further we know that (relative)
fluctuations in energy are small. But if energy is log
probability, and relative fluctuations in energy are small,
this must mean that almost all the states we actually
observe have log probabilities which are the same. By
analogy, all the long sequences of answers must fall into
two groups: those with − log2 P ≈ NS, and those with
P ≈ 0. Now this is all a bit sloppy, but it is the right
idea: if we are willing to think about long sequences or
streams of data, then the equivalence of ensembles tells
us that ‘typical’ sequences are uniformly distributed over
N ≈ 2NS possibilities, and that this appproximation be-
comes more and more accurate as the length N of the
sequences becomes large.

The idea of typical sequences, which is the information
theoretic version of a thermodynamic limit, is enough to
tell us that our simple arguments about representing an-
swers by binary numbers ought to work on average for

long sequences of answers. We will have to work sig-
nificantly harder to show that this is really the smallest
possible representation. An important if obvious conse-
quence is that if we have many rather unlikekly answers
(rather than fewer more likely answers) then we need
more space to write the answers down. More profoundly,
this turns out to be true answer by answer: to be sure
that long sequences of answers take up as little space as
possible, we need to use an average of `n = − log2 pn

bits to represent each individual answer n. Thus an-
swers which are more surprising require more space to
write down.

C. Entropy lost and information gained

Returning to the conversation between Max and Al-
lan, we assumed that Max would receive a complete an-
swer to his question, and hence that all his uncertainty
would be removed. This is an idealization, of course.
The more natural description is that, for example, the
world can take on many states W , and by observing data
D we learn something but not everything about W . Be-
fore we make our observations, we know only that states
of the world are chosen from some distribution P (W ),
and this distribution has an entropy S(W ). Once we
observe some particular datum D, our (hopefully im-
proved) knowledge of W is described by the conditional
distribution P (W |D), and this has an entropy S(W |D)
that is smaller than S(W ) if we have reduced our un-
certainty about the state of the world by virtue of our
observations. We identify this reduction in entropy as
the information that we have gained about W .

Perhaps this is the point to note that a single observa-
tion D is not, in fact, guaranteed to provide positive in-
formation [see, for example, DeWeese and Meister 1999].
Consider, for instance, data which tell us that all of our
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previous measurements have larger error bars than we
thought: clearly such data, at an intuitive level, reduce
our knowledge about the world and should be associ-
ated with a negative information. Another way to say
this is that some data points D will increase our uncer-
tainty about state W of the world, and hence for these
particular data the conditional distribution P (W |D) has
a larger entropy than the prior distribution P (D). If
we identify information with the reduction in entropy,

ID = S(W )−S(W |D), then such data points are associ-
ated unambiguously with negative information. On the
other hand, we might hope that, on average, gathering
data corresponds to gaining information: although sin-
gle data points can increase our uncertainty, the average
over all data points does not.

If we average over all possible data—weighted, of
course, by their probability of occurrence P (D)—we ob-
tain the average information that D provides about W :

I(D →W ) = S(W )−
∑
D

P (D)S(W |D) (21)

= −
∑
W

P (W ) log2 P (W )−
∑
D

P (D)

[
−
∑
W

P (W |D) log2 P (W |D)

]
(22)

= −
∑
W

∑
D

P (W,D) log2 P (W ) +
∑
W

∑
D

P (W |D)P (D) log2 P (W |D) (23)

= −
∑
W

∑
D

P (W,D) log2 P (W ) +
∑
W

∑
D

P (W,D) log2 P (W |D) (24)

=
∑
W

∑
D

P (W,D) log2

[
P (W |D)
P (W )

]
(25)

=
∑
W

∑
D

P (W,D) log2

[
P (W,D)
P (W )P (D)

]
. (26)

We see that, after all the dust settles, the information
which D provides about W is symmetric in D and W .
This means that we can also view the state of the world
as providing information about the data we will observe,
and this information is, on average, the same as the data
will provide about the state of the world. This ‘informa-
tion provided’ is therefore often called the mutual in-
formation, and this symmetry will be very important in
subsequent discussions; to remind ourselves of this sym-
metry we write I(D;W ) rather than I(D →W ).

One consequence of the symmetry or mutuality of in-
formation is that we can write

I(D;W ) = S(W )−
∑
D

P (D)S(W |D) (27)

= S(D)−
∑
W

P (W )S(D|W ). (28)

If we consider only discrete sets of possibilities then en-
tropies are positive (or zero), so that these equations
imply

I(D;W ) ≤ S(W ) (29)
I(D;W ) ≤ S(D). (30)

The first equation tells us that by observing D we can-
not learn more about the world then there is entropy
in the world itself. This makes sense: entropy measures

the number of possible states that the world can be in,
and we cannot learn more than we would learn by re-
ducing this set of possibilities down to one unique state.
Although sensible (and, of course, true), this is not a
terribly powerful statement: seldom are we in the po-
sition that our ability to gain knowledge is limited by
the lack of possibilities in the world around us.6 The
second equation, however, is much more powerful. It
says that, whatever may be happening in the world, we
can never learn more than the entropy of the distribu-
tion that characterizes our data. Thus, if we ask how
much we can learn about the world by taking readings
from a wind detector on top of the roof, we can place
a bound on the amount we learn just by taking a very
long stream of data, using these data to estimate the
distribution P (D), and then computing the entropy of
this distribution.

The entropy of our observations7 thus limits how much

6 This is not quite true. There is a tradition of studying the ner-
vous system as it responds to highly simplified signals, and under
these conditions the lack of possibilities in the world can be a sig-
nificant limitation, substantially confounding the interpretation
of experiments.

7 In the same way that we speak about the entropy of a gas I will
often speak about the entropy of a variable or the entropy of a
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we can learn no matter what question we were hoping to
answer, and so we can think of the entropy as setting (in
a slight abuse of terminology) the capacity of the data
D to provide or to convey information. As an example,
the entropy of neural responses sets a limit to how much
information a neuron can provide about the world, and
we can estimate this limit even if we don’t yet understand
what it is that the neuron is telling us (or the rest of the
brain).

D. Optimizing input/output relations

These ideas are enough to get started on “designing”
some simple neural processes [Laughlin 1981]. Imagine
that a neuron is responsible for representing a single
number such as the light intensity I averaged over a
small patch of the retina (don’t worry about time depen-
dence). Assume that this signal will be represented by a
continuous voltage V , which is true for the first stages of
processing in vision, as we have seen in the first section
of the course. The information that the voltage provides
about the intensity is

I(V → I) =
∫
dI
∫
dV P (V, I) log2

[
P (V, I)
P (V )P (I)

]
(31)

=
∫
dI
∫
dV P (V, I) log2

[
P (V |I)
P (V )

]
.

(32)

The conditional distribution P (V |I) describes the pro-
cess by which the neuron responds to its input, and so
this is what we should try to “design.”

Let us suppose that the voltage is on average a non-
linear function of the intensity, and that the dominant
source of noise is additive (to the voltage), independent
of light intensity, and small compared with the overall
dynamic range of the cell:

V = g(I) + ξ, (33)

with some distribution Pnoise(ξ) for the noise. Then the
conditional distribution

P (V |I) = Pnoise(V − g(I)), (34)

and the entropy of this conditional distribution can be
written as

Scond = −
∫
dV P (V |I) log2 P (V |I) (35)

response. In the gas, we understand from statistical mechanics
that the entropy is defined not as a property of the gas but as
a property of the distribution or ensemble from which the mi-
croscopic states of the gas are chosen; similarly we should really
speak here about “the entropy of the distribution of observa-
tions,” but this is a bit cumbersome. I hope that the slightly
sloppy but more compact phrasing does not cause confusion.

= −
∫
dξ Pnoise(ξ) log2 Pnoise(ξ). (36)

Note that this is a constant, independent both of the
light intensity and of the nonlinear input/output relation
g(I). This is useful because we can write the information
as a difference between the total entropy of the output
variable V and this conditional or noise entropy, as in
Eq. (28):

I(V → I) = −
∫
dV P (V ) log2 P (V )− Scond. (37)

With Scond constant independent of our ‘design,’ max-
imizing information is the same as maximizing the en-
tropy of the distribution of output voltages. Assuming
that there are maximum and minimum values for this
voltage, but no other constraints, then the maximum en-
tropy distribution is just the uniform distribution within
the allowed dynamic range. But if the noise is small it
doesn’t contribute much to broadening P (V ) and we cal-
culate this distribution as if there were no noise, so that

P (V )dV = P (I)dI, (38)
dV

dI
=

1
P (V )

· P (I). (39)

Since we want to have V = g(I) and P (V ) = 1/(Vmax−
Vmin), we find

dg(I)
dI

= (Vmax − Vmin)P (I), (40)

g(I) = (Vmax − Vmin)
∫ I
Imin

dI ′P (I ′). (41)

Thus, the optimal input/output relation is proportional
to the cumulative probability distribution of the input
signals.

The predictions of Eq. (41) are quite interesting. First
of all it makes clear that any theory of the nervous sys-
tem which involves optimizing information transmission
or efficiency of representation inevitably predicts that
the computations done by the nervous system must be
matched to the statistics of sensory inputs (and, presum-
ably, to the statistics of motor outputs as well). Here the
matching is simple: in the right units we could just read
off the distribution of inputs by looking at the (differ-
entiated) input/output relation of the neuron. Second,
this simple model automatically carries some predictions
about adaptation to overall light levels. If we live in a
world with diffuse light sources that are not directly vis-
ible, then the intensity which reaches us at a point is
the product of the effective brightness of the source and
some local reflectances. As is it gets dark outside the re-
flectances don’t change—these are material properties—
and so we expect that the distribution P (I) will look
the same except for scaling. Equivalently, if we view the
input as the log of the intensity, then to a good approx-
imation P (log I) just shifts linearly along the log I axis
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FIG. 1 Matching of input/output relation to the distribu-
tion of inputs in the fly large monopolar cells (LMCs). Top,
a schematic probability distribution for light intensity. Mid-
dle, the optimal input/output relation according to Eq (41),
highlighting the fact that equal ranges of output correspond
to equal mass under the input distribution. Bottom, mea-
surements of the input/output relation in LMCs compared
with these predictions From [Laughlin 1981 & 1987].

as mean light intensity goes up and down. But then
the optimal input/output relation g(I) would exhibit a
similar invariant shape with shifts along the input axis
when expressed as a function of log I, and this is in rough
agreement with experiments on light/dark adaptation in
a wide variety of visual neurons. Finally, although obvi-
ously a simplified version of the real problem facing even
the first stages of visual processing, this calculation does
make a quantitative prediction that would be tested if
we measure both the input/output relations of early vi-
sual neurons and the distribution of light intensities that
the animal encounters in nature.

Laughlin made this comparison (25 years ago!) for

the fly visual system [Laughlin 1981]. He built an elec-
tronic photodetector with aperture and spectral sensi-
tivity matched to those of the fly retina and used his
photodetector to scan natural scenes, measuring P (I)
as it would appear at the input to these neurons. In
parallel he characterized the second order neurons of the
fly visual system—the large monopolar cells which re-
ceive direct synaptic input from the photoreceptors—by
measuring the peak voltage response to flashes of light.
The agreement with Eq. (41) was remarkable (Fig 1),
especially when we remember that there are no free pa-
rameters. While there are obvious open questions (what
happened to time dependence?), this is a really beautiful
result that inspires us to take these ideas more seriously.

E. Maximum entropy distributions

Since the information we can gain is limited by the
entropy, it is natural to ask if we can put limits on the
entropy using some low order statistical properties of the
data: the mean, the variance, perhaps higher moments
or correlation functions, ... . In particular, if we can say
that the entropy has a maximum value consistent with
the observed statistics, then we have placed a firm upper
bound on the information that these data can convey.

The problem of finding the maximum entropy given
some constraint again is familiar from statistical mechan-
ics: the Boltzmann distribution is the distribution that
has the largest possible entropy given the mean energy.
More generally, imagine that we have knowledge not of
the whole probability distribution P (D) but only of some
expectation values,

〈fi〉 =
∑
D

P (D)fi(D), (42)

where we allow that there may be several expectation
values known (i = 1, 2, ...,K). Actually there is one more
expectation value that we always know, and this is that
the average value of one is one; the distribution is nor-
malized:

〈f0〉 =
∑
D

P (D) = 1. (43)

Given the set of numbers {〈f0〉, 〈f1〉, · · · , 〈fK〉} as con-
straints on the probability distribution P (D), we would
like to know the largest possible value for the entropy,
and we would like to find explicitly the distribution that
provides this maximum.

The problem of maximizing a quantity subject to con-
straints is formulated using Lagrange multipliers. In this
case, we want to maximize S = −

∑
P (D) log2 P (D), so

we introduce a function S̃, with one Lagrange multiplier
λi for each constraint:
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S̃[P (D)] = −
∑
D

P (D) log2 P (D)−
K∑

i=0

λi〈fi〉 (44)

= − 1
ln 2

∑
D

P (D) lnP (D)−
K∑

i=0

λi

∑
D

P (D)fi(D). (45)

Our problem is then to find the maximum of the function
S̃, but this is easy because the probability for each value
of D appears independently. The result is that

P (D) =
1
Z

exp

[
−

K∑
i=1

λifi(D)

]
, (46)

where Z = exp(1 + λ0) is a normalization constant.
There are few more things worth saying about maxi-

mum entropy distributions. First, we recall that if the
value of D indexes the states n of a physical system, and
we know only the expectation value of the energy,

〈E〉 =
∑

n

PnEn, (47)

then the maximum entropy distribution is

Pn =
1
Z

exp(−λEn), (48)

which is the Boltzmann distribution (as promised).
In this case the Lagrange multiplier λ has physical
meaning—it is the inverse temperature. Further, the
function S̃ that we introduced for convenience is the dif-
ference between the entropy and λ times the energy; if
we divide through by λ and flip the sign, then we have
the energy minus the temperature times the entropy, or
the free energy. Thus the distribution which maximizes
entropy at fixed average energy is also the distribution
which minimizes the free energy.

If we are looking at a magnetic system, for example,
and we know not just the average energy but also the
average magnetization, then a new term appears in the
exponential of the probability distribution, and we can
interpret this term as the magnetic field multiplied by
the magnetization. More generally, for every order pa-
rameter which we assume is known, the probability dis-
tribution acquires a term that adds to the energy and

can be thought of as a product of the order parameter
with its conjugate force. Again, all these remarks should
be familiar from a statistical mechanics course.

Probability distributions that have the maximum en-
tropy form of Eq. (46) are special not only because of
their connection to statistical mechanics, but because
they form what the statisticians call an ‘exponential fam-
ily,’ which seems like an obvious name. The important
point is that exponential families of distributions are
(almost) unique in having sufficient statistics. To un-
derstand what this means, consider the following prob-
lem: We observe a set of samples D1, D2, · · · , DN , each
of which is drawn independently and at random from a
distribution P (D|{λi}). Assume that we know the form
of this distribution but not the values of the parameters
{λi}. How can we estimate these parameters from the
set of observations {Dn}? Notice that our data set {Dn}
consists of N numbers, and N can be very large; on the
other hand there typically are a small number K � N
of parameters λi that we want to estimate. Even in this
limit, no finite amount of data will tell us the exact val-
ues of the parameters, and so we need a probabilistic
formulation: we want to compute the distribution of pa-
rameters given the data, P ({λi}|{Dn}). We do this using
Bayes’ rule,

P ({λi}|{Dn}) =
1

P ({Dn})
·P ({Dn}|{λi})P ({λi}), (49)

where P ({λi}) is the distribution from which the pa-
rameter values themselves are drawn. Then since each
datum Dn is drawn independently, we have

P ({Dn}|{λi}) =
N∏

n=1

P (Dn|{λi}). (50)

For probability distributions of the maximum entropy
form we can proceed further, using Eq. (46):

P ({λi}|{Dn}) =
1

P ({Dn})
· P ({Dn}|{λi})P ({λi})

=
P ({λi})
P ({Dn})

N∏
n=1

P (Dn|{λi}) (51)
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=
P ({λi})

ZNP ({Dn})

N∏
n=1

exp

[
−

K∑
i=1

λifi(Dn)

]
(52)

=
P ({λi})

ZNP ({Dn})
exp

[
−N

K∑
i=1

λi
1
N

N∑
n=1

fi(Dn)

]
. (53)

We see that all of the information that the data points
{Dn} can give about the parameters λi is contained in
the average values of the functions fi over the data set,
or the ‘empirical means’ f̄i,

f̄i =
1
N

N∑
n=1

fi(Dn). (54)

More precisely, the distribution of possible parameter
values consistent with the data depends not on all details
of the data, but rather only on the empirical means {f̄i},

P ({λi}|D1, D2, · · · , DN ) = P ({λi}|{f̄j}), (55)

and a consequence of this is the information theoretic
statement

I(D1, D2, · · · , DN → {λi}) = I({f̄j} → {λi}). (56)

This situation is described by saying that the reduced set
of variables {f̄j} constitute sufficient statistics for learn-
ing the distribution. Thus, for distributions of this form,
the problem of compressing N data points into K << N
variables that are relevant for parameter estimation can
be solved explicitly: if we keep track of the running aver-
ages f̄i we can compress our data as we go along, and we
are guaranteed that we will never need to go back and
examine the data in more detail. A clear example is that
if we know data are drawn from a Gaussian distribution,
running estimates of the mean and variance contain all
the information available about the underlying parame-
ter values.

The Gaussian example makes it seem that the con-
cept of sufficient statistics is trivial: of course if we know
that data are chosen from a Gaussian distribution, then
to identify the distribution all we need to do is to keep
track of two moments. Far from trivial, this situation is
quite unusual. Most of the distributions that we might
write down do not have this property—even if they are
described by a finite number of parameters, we cannot
guarantee that a comparably small set of empirical ex-
pectation values captures all the information about the
parameter values. If we insist further that the sufficient
statistics be additive and permutation symmetric,8 then

8 These conditions mean that the sufficient statistics can be con-
structed as running averages, and that the same data points in
different sequence carry the same information.

it is a theorem that only exponential families have suffi-
cient statistics.

The generic problem of information processing, by the
brain or by a machine, is that we are faced with a huge
quantity of data and must extract those pieces that are
of interest to us. The idea of sufficient statistics is in-
triguing in part because it provides an example where
this problem of ‘extracting interesting information’ can
be solved completely: if the points D1, D2, · · · , DN are
chosen independently and at random from some distri-
bution, the only thing which could possibly be ‘interest-
ing’ is the structure of the distribution itself (everything
else is random, by construction), this structure is de-
scribed by a finite number of parameters, and there is
an explicit algorithm for compressing the N data points
{Dn} into K numbers that preserve all of the interesting
information.9 The crucial point is that this procedure
cannot exist in general, but only for certain classes of
probability distributions. This is an introduction to the
idea some kinds of structure in data are learnable from
random examples, while other structures are not.

Consider the (Boltzmann) probability distribution for
the states of a system in thermal equilibrium. If we ex-
pand the Hamiltonian as a sum of terms (operators) then
the family of possible probability distributions is an ex-
ponential family in which the coupling constants for each
operator are the parameters analogous to the λi above.
In principle there could be an infinite number of these
operators, but for a given class of systems we usually
find that only a finite set are “relevant” in the renor-
malization group sense: if we write an effective Hamil-
tonian for coarse grained degrees of freedom, then only
a finite number of terms will survive the coarse graining
procedure. If we have only a finite number of terms in
the Hamiltonian, then the family of Boltzmann distribu-
tions has sufficient statistics, which are just the expec-
tation values of the relevant operators. This means that
the expectation values of the relevant operators carry all
the information that the (coarse grained) configuration
of the system can provide about the coupling constants,
which in turn is information about the identity or mi-
croscopic structure of the system. Thus the statement
that there are only a finite number of relevant operators

9 There are more subtle questions: How many bits are we squeez-
ing out in this process of compression, and how many bits of
relevance are left? We return to this and related questions when
we talk about learning later in the course.
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is also the statement that a finite number of expectation
values carries all the information about the microscopic
dynamics. The ‘if’ part of this statement is obvious:
if there are only a finite number of relevant operators,
then the expectation values of these operators carry all
the information about the identity of the system. The
statisticians, through the theorem about the uniqueness
of exponential families, give us the ‘only if’: a finite num-
ber of expectation values (or correlation functions) can
provide all the information about the system only if the
effective Hamiltonian has a finite number of relevant op-
erators. I suspect that there is more to say along these
lines, but let us turn instead to some examples.

Consider the situation in which the data D are real
numbers x. Suppose that we know the mean value of x
and its variance. This is equivalent to knowledge of two
expectation values,

f̄1 = 〈x〉 =
∫
dxP (x)x, and (57)

f̄2 = 〈x2〉 =
∫
dxP (x)x2, (58)

so we have f1(x) = x and f2(x) = x2. Thus, from Eq.
(46), the maximum entropy distribution is of the form

P (x) =
1
Z

exp(−λ1x− λ2x
2). (59)

This is a funny way of writing a more familiar ob-
ject. If we identify the parameters λ2 = 1/(2σ2) and
λ1 = −〈x〉/σ2, then we can rewrite the maximum en-
tropy distribution as the usual Gaussian,

P (x) =
1√

2πσ2
exp

[
− 1

2σ2
(x− 〈x〉)2

]
. (60)

We recall that Gaussian distributions usually arise
through the central limit theorem: if the random vari-
ables of interest can be thought of as sums of many inde-
pendent events, then the distributions of the observable
variables converge to Gaussians. This provides us with
a ‘mechanistic’ or reductionist view of why Gaussians
are so important. A very different view comes from in-
formation theory: if all we know about a variable is the
mean and the variance, then the Gaussian distribution is
the maximum entropy distribution consistent with this
knowledge. Since the entropy measures (returning to our
physical intuition) the randomness or disorder of the sys-
tem, the Gaussian distribution describes the ‘most ran-
dom’ or ‘least structured’ distribution that can generate
the known mean and variance.

A somewhat different situation is when the data D
are generated by counting. Then the relevant variable
is an integer n = 0, 1, 2, · · ·, and it is natural to imagine
that what we know is the mean count 〈n〉. One way this
problem can arise is that we are trying to communicate
and are restricted to sending discrete or quantized units.
An obvious case is in optical communication, where the

quanta are photons. In the brain, quantization abounds:
most neurons do not generate continuous analog volt-
ages but rather communicate with one another through
stereotyped pulses or spikes, and even if the voltages vary
continuously transmission across a synapse involves the
release of a chemical transmitter which is packaged into
discrete vesicles. It can be relatively easy to measure the
mean rate at which discrete events are counted, and we
might want to know what bounds this mean rate places
on the ability of the cells to convey information. Alter-
natively, there is an energetic cost associated with these
discrete events—generating the electrical currents that
underlie the spike, constructing and filling the vesicles,
... —and we might want to characterize the mechanisms
by their cost per bit rather than their cost per event.
If we know the mean count, there is (as for the Boltz-
mann distribution) only one function f1(n) = n that can
appear in the exponential of the distribution, so that

P (n) =
1
Z

exp(−λn). (61)

Of course we have to choose the Lagrange multiplier to
fix the mean count, and it turns out that λ = ln(1 +
1/〈n〉); further we can find the entropy

Smax(counting) = log2(1 + 〈n〉) + 〈n〉 log2(1 + 1/〈n〉).
(62)

The information conveyed by counting something can
never exceed the entropy of the distribution of counts,
and if we know the mean count then the entropy can
never exceed the bound in Eq. (62). Thus, if we have
a system in which information is conveyed by counting
discrete events, the simple fact that we count only a lim-
ited number of events (on average) sets a bound on how
much information can be transmitted. We will see that
real neurons and synapses approach this fundamental
limit.

One might suppose that if information is coded in the
counting of discrete events, then each event carries a
certain amount of information. In fact this is not quite
right. In particular, if we count a large number of events
then the maximum counting entropy becomes

Smax(counting; 〈n〉 → ∞) ∼ log2(〈n〉e), (63)

and so we are guaranteed that the entropy (and hence
the information) per event goes to zero, although the
approach is slow. On the other hand, if events are very
rare, so that the mean count is much less than one, we
find the maximum entropy per event

1
〈n〉

Smax(counting; 〈n〉 << 1) ∼ log2

(
e

〈n〉

)
, (64)

which is arbitrarily large for small mean count. This
makes sense: rare events have an arbitrarily large ca-
pacity to surprise us and hence to convey information.
It is important to note, though, that the maximum en-
tropy per event is a monotonically decreasing function of
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the mean count. Thus if we are counting spikes from a
neuron, counting in larger windows (hence larger mean
counts) is always less efficient in terms of bits per spike.

If it is more efficient to count in small time windows,
perhaps we should think not about counting but about
measuring the arrival times of the discrete events. If we
look at a total (large) time interval 0 < t < T , then we
will observe arrival times t1, t2, · · · , tN in this interval;
note that the number of events N is also a random vari-
able. We want to find the distribution P (t1, t2, · · · , tN )
that maximizes the entropy while holding fixed the aver-
age event rate. We can write the entropy of the distribu-
tion as a sum of two terms, one from the entropy of the
arrival times given the count and one from the entropy

of the counting distribution:

S ≡ −
∞∑

N=0

∫
dN tnP (t1, t2, · · · , tN ) log2 P (t1, t2, · · · , tN )

=
∞∑

N=0

P (N)Stime(N)−
∞∑

N=0

P (N) log2 P (N), (65)

where we have made use of

P (t1, t2, · · · , tN ) = P (t1, t2, · · · , tN |N)P (N), (66)

and the (conditional) entropy of the arrival times in given
by

Stime(N) = −
∫
dN tnP (t1, t2, · · · , tN |N) log2 P (t1, t2, · · · , tN |N). (67)

If all we fix is the mean count, 〈N〉 =
∑

N P (N)N ,
then the conditional distributions for the locations
of the events given the total number of events,
P (t1, t2, · · · , tN |N), are unconstrained. We can maxi-
mize the contribution of each of these terms to the en-
tropy [the terms in the first sum of Eq. (65)] by making
the distributions P (t1, t2, · · · , tN |N) uniform, but it is
important to be careful about normalization. When we
integrate over all the times t1, t2, · · · , tN , we are forget-
ting that the events are all identical, and hence that per-
mutations of the times describe the same events. Thus
the normalization condition is not∫ T

0

dt1

∫ T

0

dt2 · · ·
∫ T

0

dtNP (t1, t2, · · · , tN |N) = 1,

(68)
but rather

1
N !

∫ T

0

dt1

∫ T

0

dt2 · · ·
∫ T

0

dtNP (t1, t2, · · · , tN |N) = 1.

(69)

This means that the uniform distribution must be

P (t1, t2, · · · , tN |N) =
N !
TN

, (70)

and hence that the entropy [substituting into Eq. (65)]
becomes

S = −
∞∑

N=0

P (N)
[
log2

(
N !
TN

)
+ log2 P (N)

]
. (71)

Now to find the maximum entropy we proceed as before.
We introduce Lagrange multipliers to constrain the mean
count and the normalization of the distribution P (N),
which leads to the function

S̃ = −
∞∑

N=0

P (N)
[
log2

(
N !
TN

)
+ log2 P (N) + λ0 + λ1N

]
, (72)

and then we maximize this function by varying P (N). As before the different Ns are not coupled, so the optimization
conditions are simple:

0 =
∂S̃

∂P (N)
(73)

= − 1
ln 2

[
ln
(
N !
TN

)
+ lnP (N) + 1

]
− λ0 − λ1N, (74)
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lnP (N) = − ln
(
N !
TN

)
− (λ1 ln 2)N − (1 + λ0 ln 2). (75)

Combining terms and simplifying, we have

P (N) =
1
Z

(λT )N

N !
, (76)

Z =
∞∑

N=0

(λT )N

N !
= exp(λT ). (77)

This is the Poisson distribution.
The Poisson distribution usually is derived (as in our

discussion of photon counting) by assuming that the
probability of occurrence of an event in any small time
bin of size ∆τ is independent of events in any other bin,
and then we let ∆τ → 0 to obtain a distribution in the
continuum. This is not surprising: we have found that
the maximum entropy distribution of events given the
mean number of events (or their density 〈N〉/T ) is given
by the Poisson distribution, which corresponds to the
events being thrown down at random with some proba-
bility per unit time (again, 〈N〉/T ) and no interactions
among the events. This describes an ‘ideal gas’ of events
along a line (time). More generally, the ideal gas is the
gas with maximum entropy given its density; interac-
tions among the gas molecules always reduce the entropy
if we hold the density fixed.

If we have multiple variables, x1, x2, · · · , xN , then we
can go through all of the same analyses as before. In par-
ticular, if these are continuous variables and we are told
the means and covariances among the variables, then
the maximum entropy distribution is again a Gaussian
distribution, this time the appropriate multidimensional
Gaussian. This example, like the other examples so far,
is simple in that we can give not only the form of the
distribution but we can find the values of the parameters
that will satisfy the constraints. In general this is not
so easy: think of the Boltzmann distribution, where we
would have to adjust the temperature to obtain a given
value of the average energy, but if we can give an explicit
relation between the temperature and average energy for
any system then we have solved almost all of statistical
mechanics!

One important example is provided by binary strings.
If we label 1s by spin up and 0s by spin down, the bi-
nary string is equivalent to an Ising chain {σi}. Fixing
the probability of a 1 is the same as fixing the mean
magnetization 〈σi〉. If, in addition, we specify the joint
probability of two 1s occurring in bins separated by n
steps (for all n), this is equivalent to fixing the spin–
spin correlation function 〈σiσj〉. The maximum entropy
distribution consistent with these constraints is an Ising
model,

P [{σi}] =
1
Z

exp

−h∑
i

σi −
∑

ij

Jijσiσj

 ; (78)

note that the interactions are pairwise (because we fix
only a two–point function) but not limited to near neigh-
bors. Obviously the problem of finding the exchange in-
teractions which match the correlation function is not so
simple.

Another interesting feature of the Ising or binary
string problem concerns higher order correlation func-
tions. If we have continuous variables and constrain the
two–point correlation functions, then the maximum en-
tropy distribution is Gaussian and there are no nontrivial
higher order correlations. But if the signals we observe
are discrete, as in the sequence of spikes from a neuron,
then the maximum entropy distribution is an Ising model
and this model makes nontrivial predictions about the
multipoint correlations. In particular, if we record the
spike trains from K separate neurons and measure all of
the pairwise correlation functions, then the correspond-
ing Ising model predicts that there will be irreducible
correlations among triplets of neurons, and higher order
correlations as well [Schneidman et al 2006].

Before closing the discussion of maximum entropy dis-
tributions, note that our simple solution to the problem,
Eq. (46), might not work. Taking derivatives and setting
them to zero works only if the solution to our problem is
in the interior of the domain allowed by the constraints.
It is also possible that the solution lies at the boundary
of this allowed region. This seems especially likely when
we combine different kinds of constraints, such as trying
to find the maximum entropy distribution of images con-
sistent both with the two–point correlation function and
with the histogram of intensity values at one point. The
relevant distribution is a 2D field theory with a (gener-
ally nonlocal) quadratic ‘kinetic energy’ and some arbi-
trary local potential; it is not clear that all combinations
of correlations and histograms can be realized, nor that
the resulting field theory will be stable under renormal-
ization.10 There are many open questions here.

F. Information transmission with noise

We now want to look at information transmission in
the presence of noise, connecting back a bit to what we
discussed in earlier parts of the of course. Imagine that
we are interested in some signal x, and we have a detector
that generates data y which is linearly related to the
signal but corrupted by added noise:

y = gx+ ξ. (79)

10 The empirical histograms of local quantities in natural images
are stable under renormalization [Ruderman and Bialek 1994].
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It seems reasonable in many systems to assume that the
noise arises from many added sources (e.g., the Brow-
nian motion of electrons in a circuit) and hence has a
Gaussian distribution because of the central limit theo-
rem. We will also start with the assumption that x is
drawn from a Gaussian distribution just because this is
a simple place to start; we will see that we can use the
maximum entropy property of Gaussians to make some
more general statements based on this simple example.
The question, then, is how much information observa-
tions on y provide about the signal x.

Let us formalize our assumptions. The statement that
ξ is Gaussian noise means that once we know x, y is
Gaussian distributed around a mean value of gx:

P (y|x) =
1√

2π〈ξ2〉
exp

[
− 1

2〈ξ2〉
(y − gx)2

]
. (80)

Our simplification is that the signal x also is drawn from
a Gaussian distribution,

P (x) =
1√

2π〈x2〉
exp

[
− 1

2〈x2〉
x2

]
, (81)

and hence y itself is Gaussian,

P (y) =
1√

2π〈y2〉
exp

[
− 1

2〈y2〉
y2

]
(82)

〈y2〉 = g2〈x2〉+ 〈ξ2〉. (83)

To compute the information that y provides about x we
use Eq. (26):

I(y → x) =
∫
dy

∫
dxP (x, y) log2

[
P (x, y)
P (x)P (y)

]
bits (84)

=
1

ln 2

∫
dy

∫
dxP (x, y) ln

[
P (y|x)
P (y)

]
(85)

=
1

ln 2

〈
ln

[√
2π〈y2〉√
2π〈ξ2〉

]
− 1

2〈ξ2〉
(y − gx)2 +

1
2〈y2〉

y2

〉
,

(86)

where by 〈· · ·〉 we understand an expectation value over
the joint distribution P (x, y). Now in Eq. (86) we can
see that the first term is the expectation value of a con-
stant, which is just the constant. The third term involves
the expectation value of y2 divided by 〈y2〉, so we can
cancel numerator and denominator. In the second term,
we can take the expectation value first of y with x fixed,
and then average over x, but since y = gx + ξ the nu-
merator is just the mean square fluctuation of y around
its mean value, which again cancels with the 〈ξ2〉 in the
denominator. So we have, putting the three terms to-
gether,

I(y → x) =
1

ln 2

[
ln

√
〈y2〉
〈ξ2〉

− 1
2

+
1
2

]
(87)

=
1
2

log2

(
〈y2〉
〈ξ2〉

)
(88)

=
1
2

log2

(
1 +

g2〈x2〉
〈ξ2〉

)
bits. (89)

Although it may seem like useless algebra, I would like
to rewrite this result a little bit. Rather than thinking of
our detector as adding noise after generating the signal
gx, we can think of it as adding noise directly to the

input, and then transducing this corrupted input:

y = g(x+ ηeff), (90)

where, obviously, ηeff = ξ/g. Note that the “effective
noise” ηeff is in the same units as the input x; this is
called ‘referring the noise to the input’ and is a standard
way of characterizing detectors, amplifiers and other de-
vices. Clearly if we build a photodetector it is not so
useful to quote the noise level in Volts at the output
... we want to know how this noise limits our ability
to detect dim lights. Similarly, when we characterize a
neuron that uses a stream of pulses to encode a con-
tinuous signal, we don’t want to know the variance in
the pulse rate; we want to know how noise in the neural
response limits precision in estimating the real signal,
and this amounts to defining an effective noise level in
the units of the signal itself. In the present case this is
just a matter of dividing, but generally it is a more com-
plex task. With the effective noise level, the information
transmission takes a simple form,

I(y → x) =
1
2

log2

(
1 +

〈x2〉
〈η2

eff〉

)
bits, (91)

or

I(y → x) =
1
2

log2(1 + SNR), (92)
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where the signal to noise ratio is the ratio of the vari-
ance in the signal to the variance of the effective noise,
SNR = 〈x2〉/〈η2

eff〉.
The result in Eq. (92) is easy to picture: When we

start, the signal is spread over a range δx0 ∼ 〈x2〉1/2, but
by observing the output of our detector we can localize
the signal to a small range δx1 ∼ 〈η2

eff〉1/2, and the reduc-
tion in entropy is ∼ log2(δx0/δx1) ∼ (1/2) · log2(SNR),
which is approximately the information gain.

As a next step consider the case where we ob-
serve several variables y1, y2, · · · , yK in the hopes of
learning about the same number of underlying signals
x1, x2, · · · , xK . The equations analogous to Eq. (79) are

then

yi = gijxj + ξi, (93)

with the usual convention that we sum over repeated
indices. The Gaussian assumptions are that each xi and
ξi has zero mean, but in general we have to think about
arbitrary covariance matrices,

Sij = 〈xixj〉 (94)
Nij = 〈ξiξj〉. (95)

The relevant probability distributions are

P ({xi}) =
1√

(2π)K detS
exp

[
−1

2
xi · (S−1)ij · xj

]
(96)

P ({yi}|{xi}) =
1√

(2π)K detN
exp

[
−1

2
(yj − gikxk) · (N−1)ij · (yj − gjmxm)

]
, (97)

where again the summation convention is used; detS
denotes the determinant of the matrix S, and (S−1)ij is
the ij element in the inverse of the matrix S.

To compute the mutual information we proceed as be-
fore. First we find P ({yi}) by doing the integrals over
the xi,

P ({yi}) =
∫
dKxP ({yi}|{xi})P ({xi}), (98)

and then we write the information as an expectation
value,

I({yi} → {xi}) =

〈
log2

[
P ({yi}|{xi})
P ({yi})

]〉
, (99)

where 〈· · ·〉 denotes an average over the joint distribu-
tion P ({yi}, {xi}). As in Eq. (86), the logarithm can
be broken into several terms such that the expectation
value of each one is relatively easy to calculate. Two of
three terms cancel, and the one which survives is related
to the normalization factors that come in front of the
exponentials. After the dust settles we find

I({yi} → {xi}) =
1
2

Tr log2[1 +N−1 · (g · S · gT )], (100)

where Tr denotes the trace of a matrix, 1 is the unit
matrix, and gT is the transpose of the matrix g.

The matrix g · S · gT describes the covariance of those
components of y that are contributed by the signal x.
We can always rotate our coordinate system on the space
of ys to make this matrix diagonal, which corresponds
to finding the eigenvectors and eigenvalues of the covari-
ance matrix; these eigenvectors are also called “principal

components.” The eigenvectors describe directions in
the space of y which are fluctuating independently, and
the eigenvalues are the variances along each of these di-
rections. If the covariance of the noise is diagonal in the
same coordinate system, then the matrix N−1 ·(g ·S ·gT )
is diagonal and the elements along the diagonal are the
signal to noise ratios along each independent direction.
Taking the Tr log is equivalent to computing the infor-
mation transmission along each direction using Eq. (92),
and then summing the results.

An important case is when the different variables xi

represent a signal sampled at several different points in
time. Then there is some underlying continuous func-
tion x(t), and in place of the discrete Eq. (93) we have
the continuous linear response of the detector to input
signals,

y(t) =
∫
dt′M(t− t′)x(t′) + ξ(t). (101)

In this continuous case the analog of the covariance ma-
trix 〈xixj〉 is the correlation function 〈x(t)x(t′)〉. We
are usually interested in signals (and noise) that are sta-
tionary. This means that all statistical properties of the
signal are invariant to translations in time: a particular
pattern of wiggles in the function x(t) is equally likely to
occur at any time. Thus, the correlation function which
could in principle depend on two times t and t′ depends
only on the time difference,

〈x(t)x(t′)〉 = Cx(t− t′). (102)

The correlation function generalizes the covariance ma-
trix to continuous time, but we have seen that it can be
useful to diagonalize the covariance matrix, thus finding
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a coordinate system in which fluctuations in the differ-
ent directions are independent. From previous lectures
we know that the answer is to go into a Fourier repre-
sentation, where (in the Gaussian case) different Fourier
components are independent and their variances are (up
to normalization) the power spectra.

To complete the analysis of the continuous time Gaus-
sian channel described by Eq. (101), we again refer noise
to the input by writing

y(t) =
∫
dt′M(t− t′)[x(t′) + ηeff(t′)]. (103)

If both signal and effective noise are stationary, then each
has a power spectrum; let us denote the power spectrum
of the effective noise ηeff by Neff(ω) and the power spec-
trum of x by Sx(ω) as usual. There is a signal to noise
ratio at each frequency,

SNR(ω) =
Sx(ω)
Neff(ω)

, (104)

and since we have diagonalized the problem by Fourier
transforming, we can compute the information just by
adding the contributions from each frequency compo-
nent, so that

I[y(t)→ x(t)] =
1
2

∑
ω

log2[1 + SNR(ω)]. (105)

Finally, to compute the frequency sum, we recall that

∑
n

f(ωn)→ T

∫
dω

2π
f(ω). (106)

Thus, the information conveyed by observations on a
(large) window of time becomes

I[y(0 < t < T )→ x(0 < t < T )]→ T

2

∫
dω

2π
log2[1 + SNR(ω)] bits. (107)

We see that the information gained is proportional to
the time of our observations, so it makes sense to define
an information rate:

Rinfo ≡ lim
T→∞

1
T
· I[y(0 < t < T )→ x(0 < t < T )]

(108)

=
1
2

∫
dω

2π
log2[1 + SNR(ω)] bits/sec. (109)

Note that in all these equations, integrals over frequency
run over both positive and negative frequencies; if the
signals are sampled at points in time spaced by τ0 then
the maximum (Nyquist) frequency is |ω|max = π/τ0.

The Gaussian channel is interesting in part because
we can work everything out in detail, but in fact we can
learn a little bit more than this. There are many situa-
tions in which there are good physical reasons to believe
that noise will be Gaussian—it arises from the superpo-
sition of many small events, and the central limit the-
orem applies. If we know that noise is Gaussian and
we know its spectrum, we might ask how much informa-
tion can be gained about a signal that has some known
statistical properties. Because of the maximum entropy
property of the Gaussian distribution, this true infor-
mation transmission rate is always less than or equal
to what we would compute by assuming that signal is
Gaussian, measuring its spectrum, and plugging into Eq.
(109). Notice that this bound is saturated only in the
case where the signal in fact is Gaussian, that is when

the signal has some of the same statistical structure as
the noise. We will see another example of this somewhat
counterintuitive principle in just a moment.

Now we can use the maximum entropy argument in
a different way. When we study cells deep in the brain,
we might choose to deliver signals that are drawn from
a Gaussian distribution, but given the nonlinearities of
real neurons there is no reason to think that the effective
noise in the representation of these signals will be Gaus-
sian. But we can use the maximum entropy property of
the Gaussian once again, this time to show that if can
measure the power spectrum of the effective noise, and
we plug this into Eq. (109), then we will obtain a lower
bound to the true information transmission rate. Thus
we can make conservative statements about what neu-
rons can do, and we will see that even these conservative
statements can be quite powerful.

If the effective noise is Gaussian, then we know that
the maximum information transmission is achieved by
choosing signals that are also Gaussian. But this doesn’t
tell us how to choose the spectrum of these maximally
informative signals. We would like to say that mea-
surements of effective noise levels can be translated into
bounds on information transmission, but this requires
that we solve the optimization problem for shaping the
spectrum. Clearly this problem is not well posed with-
out some constraints: if we are allowed just to increase
the amplitude of the signal—multiply the spectrum by
a large constant—then we can always increase informa-
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tion transmission. We need to study the optimization
of information rate with some fixed ‘dynamic range’ for
the signals. A simple example, considered by Shannon
at the outset, is to fix the total variance of the signal
[Shannon 1949], which is the same as fixing the inte-
gral of the spectrum. We can motivate this constraint
by noting that if the signal is a voltage and we have to
drive this signal through a resistive element, then the
variance is proportional to the mean power dissipation.
Alternatively, it might be easy to measure the variance
of the signals that we are interested in (as for the visual
signals in the example below), and then the constraint
is empirical.

So the problem we want to solve is maximizing Rinfo

while holding 〈x2〉 fixed. As before, we introduce a La-
grange multiplier and maximize a new function

R̃ = Rinfo − λ〈x2〉 (110)

=
1
2

∫
dω

2π
log2

[
1 +

Sx(ω)
Neff(ω)

]
− λ

∫
dω

2π
Sx(ω).

(111)

The value of the function Sx(ω) at each frequency con-
tributes independently, so it is easy to compute the func-
tional derivatives,

δR̃

δSx(ω)
=

1
2 ln 2

· 1
1 + Sx(ω)/Neff(ω)

· 1
Neff(ω)

−λ, (112)

and of course the optimization condition is δR̃/δSx(ω) =
0. The result is that

Sx(ω) +Neff(ω) =
1

2λ ln 2
. (113)

Thus the optimal choice of the signal spectrum is one
which makes the sum of signal and (effective) noise equal
to white noise! This, like the fact that information is
maximized by a Gaussian signal, is telling us that effi-
cient information transmission occurs when the received
signals are as random as possible given the constraints.
Thus an attempt to look for structure in an optimally
encoded signal (say, deep in the brain) will be frustrat-
ing.

In general, complete whitening as suggested by Eq.
(113) can’t be achieved at all frequencies, since if the sys-
tem has finite time resolution (for example) the effective
noise grows without bound at high frequencies. Thus
the full solution is to have the spectrum determined by
Eq. (113) everywhere that the spectrum comes out to a
positive number, and then to set the spectrum equal to
zero outside this range. If we think of the effective noise
spectrum as a landscape with valleys, the condition for
optimizing information transmission corresponds to fill-
ing the valleys with water; the total volume of water is
the variance of the signal.

G. Back to the fly’s retina

These ideas have been used to characterize informa-
tion transmission across the first synapse in the fly’s
visual system [de Ruyter van Steveninck and Laugh-
lin 1996]. We have seen these data before, in thinking
about how the precision of photon counting changes as
the background light intensity increases. Recall that,

over a reasonable dynamic range of intensity varia-
tions, de Ruyter van Steveninck and Laughlin found that
the average voltage response of the photoreceptor cell is
related linearly to the intensity or contrast in the movie,
and the noise or variability δV (t) is governed by a Gaus-
sian distribution of voltage fluctuations around the av-
erage:

V (t) = VDC +
∫
dt′T (t− t′)C(t′) + δV (t). (114)

This (happily) is the problem we have just analyzed.
As before, we think of the noise in the response as

being equivalent to noise δCeff(t) that is added to the
movie itself,

V (t) = VDC +
∫
dt′T (t− t′)[C(t′) + δCeff(t)]. (115)

Since the fluctuations have a Gaussian distribution, they
can be characterized completely by their power spectrum
N eff

C (ω), which measures the variance of the fluctuations
that occur at different frequencies,

〈δCeff(t)δCeff(t′)〉 =
∫
dω

2π
N eff

C (ω) exp[−iω(t− t′)].

(116)
There is a minimum level of this effective noise set by
the random arrival of photons (shot noise). The pho-
ton noise is white if expressed as N eff

C (ω), although it
makes a nonwhite contribution to the voltage noise. As
we have discussed, over a wide range of background light
intensities and frequencies, the fly photoreceptors have
effective noise levels that reach the limit set by photon
statistics. At high frequencies there is excess noise be-
yond the physical limit, and this excess noise sets the
time resolution of the system.

The power spectrum of the effective noise tells us, ul-
timately, what signals the photoreceptor can and cannot
transmit. How do we turn these measurements into bits?
One approach is to assume that the fly lives in some
particular environment, and then calculate how much
information the receptor cell can provide about this par-
ticular environment. But to characterize the cell itself,
we might ask a different question: in principle how much
information can the cell transmit? To answer this ques-
tion we are allowed to shape the statistical structure of
the environment so as to make the best use of the recep-
tor (the opposite, presumably, of what happens in evo-
lution!). This is just the optimization discussed above,
so it is possible to turn the measurements on signals and
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FIG. 2 At left, the effective contrast noise levels in a single photoreceptor cell, a single LMC (the second order cell) and the
inferred noise level for a single active zone of the synapse from photoreceptor to LMC. The hatching shows the signal spectra
required to whiten the total output over the largest possible range while maintaining the input contrast variance 〈C2〉 = 0.1,
as discussed in the text. At right, the resulting information capacities as a function of the photon counting rates in the
photoreceptors. From [de Ruyter van Steveninck & Laughlin 1996a].

noise into estimates of the information capacity of these
cells. This was done both for the photoreceptor cells and
for the large monopolar cells that receive direct synaptic
input from a group of six receptors. From measurements
on natural scenes the mean square contrast signal was
fixed at 〈C2〉 = 0.1. Results are shown in Fig 2.

The first interesting feature of the results is the scale:
individual neurons are capable of transmitting well above
1000 bits per second. This does not mean that this
capacity is used under natural conditions, but rather
speaks to the precision of the mechanisms underlying
the detection and transmission of signals in this system.
Second, information capacity continues to increase as the
level of background light increases: noise due to photon
statistics is less important in brighter lights, and this re-
duction of the physical limit actually improves the per-
formance of the system even up to very high photon
counting rates, indicating once more that the physical
limit is relevant to the real performance. Third, we see
that the information capacity as a function of photon
counting rate is shifted along the counting rate axis as we
go from photoreceptors to LMCs, and this corresponds
(quite accurately!) to the fact that LMCs integrate sig-

nals from six photoreceptors and thus act is if they cap-
tured photons at six times higher rate. Finally, in the
large monopolar cells information has been transmitted
across a synapse, and in the process is converted from
a continuous voltage signal into discrete events corre-
sponding to the release of neurotransmitter vesicles at
the synapse. As a result, there is a new limit to infor-
mation transmission that comes from viewing the large
monopolar cell as a “vesicle counter.”

If every vesicle makes a measurable, deterministic con-
tribution to the cell’s response (a generous assumption),
then the large monopolar cell’s response is equivalent to
reporting how many vesicles are counted in a small win-
dow of time corresponding to the photoreceptor time res-
olution. We don’t know the distribution of these counts,
but we can estimate (from other experiments, with un-
certainty) the mean count, and we know that there is a
maximum entropy for any count distribution once we fix
the mean, from Eq. (62) above. No mechanism at the
synapse can transmit more information than this limit.
Remarkably, the fly operates within a factor of two of
this limit, and the agreement might be even better but
for uncertainties in the vesicle counting rate [Rieke et al
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1997].
These two examples [Laughlin 1981; de Ruyter van

Steveninck & Laughlin 1996], both from the first synapse
in fly vision, provide evidence that the visual system
really has constructed a transformation of light intensity
into transmembrane voltage that is efficient in the sense

defined by information theory. In fact there is more to
the analysis of even this one synapse (e.g., why does the
system choose the particular filter characteristics that
it does?) and there are gaps (e.g., putting together the
dynamics and the nonlinearities). But, armed with some
suggestive results, let’s go on ... .


