Getting Started in Logit and Ordered Logit Regression

(v. 3.1)

Oscar Torres-Reyna

otorres@princeton.edu

February 2008

http://www.princeton.edu/~otorres/

Logit model

- Use logit models whenever your dependent variable is binary (also called dummy) which takes values 0 or 1.
- Logit regression is a nonlinear regression model that forces the output (predicted values) to be either 0 or 1.
- Logit models estimate the probability of your dependent variable to be 1 (*Y*=1). This is the probability that some event happens.

Logit model

From Stock & Watson, key concept 9.3. The logit model is:

$$\Pr(Y = 1 \mid X1, X2, ..., X_{k}) = F(\beta_{0} + \beta_{1}X1 + \beta_{2}X2 + ... + \beta_{K}X_{K})$$

$$\Pr(Y = 1 \mid X1, X2, ..., X_{k}) = \frac{1}{1 + e^{-(\beta_{0} + \beta_{1}X1 + \beta_{2}X2 + ... + \beta_{K}X_{K})}}$$

$$\Pr(Y = 1 \mid X1, X2, ..., X_{k}) = \frac{1}{1 + \left(\frac{1}{e^{(\beta_{0} + \beta_{1}X1 + \beta_{2}X2 + ... + \beta_{K}X_{K})}}\right)}$$

Logit and probit models are basically the same, the difference is in the distribution:

- Logit Cumulative standard logistic distribution (F)
- Probit Cumulative standard normal distribution (Φ)

Both models provide similar results.

Logit model

In Stata you run the model as follows:

Logit: predicted probabilities

After running the model:

logit y_bin x1 x2 x3 x4 x5 x6 x7

Туре

predict y_bin_hat /*These are the predicted probabilities of Y=1 */

Here are the estimations for the first five cases, type:

browse y_bin x1 x2 x3 x4 x5 x6 x7 y_bin_hat

							F	Predicted proba	bilities
								+	
y_bin	×1	×2	×3	×4	×5	×б	×7	y_bin_hat	
1	3	.2779036	-1.107956	.2825536	-2.971267	.554832	5820704	.7841014	·
0	3	.3206847	94872	.4925385	-1.371243	0959275	6641465	.6678266	
0	3	.3634657	789484	.7025234	.2287798	7466869	7462227	.5267279	
1	3	.246144	885533	0943909	3198499	3573879	.0628607	.9274359	
1	3	.424623	7297683	.9461306	.1230506	0358964	.095743	.9439594	
1	3	.4772141	723246	1.02968	.1175985	0022627	.0965806	.9448991	
	To estimate the probability of Y=1 for the first row, replace the values of X into the logit regression equation. For the first case, given the values of X								
there is 79% probability that Y=1:									
Pı	$\Pr(Y=1 \mid X_1, X_2, \dots, X_7) = \frac{1}{1 + \left(\frac{1}{e^{(1.58+0.26X_125X_2 + 0.11X_3 + 0.36X_4 - 0.31X_5 - 0.13X_6 + 3.20X_7)}}\right)} = 0.7841014$								

Logit: Odds ratio

You can request odds ratio rather than logit coefficients by adding the option or (after comma)

If the OR > 1 then the odds of Y=1 increases

If the OR < 1 then the odds of Y=1 decreases

Look at the sign of the logit coefficients

coeff).

from 1. To reject this, the t-value has to be higher than 1.96 (for a 95% confidence). If this is the case then you can say that the variable has a significant influence on your dependent variable (y). The higher the z the higher the relevance of the variable.

the case then you can say that the variable has a significant influence on your dependent variable (v)

Predicted probabilities and marginal effects

For the latest procedure see the following document:

http://dss.princeton.edu/training/Margins.pdf

The procedure using prvalue in the following pages does not work with Stata 13.

Ordinal logit

When a dependent variable has more than two categories and the values of each category have a meaningful sequential order where a value is indeed 'higher' than the previous one, then you can use ordinal logit.

Here is an example of the type of variable:

•	tab	У_	_ordi	nal
---	-----	----	-------	-----

Agreement Ievel	Freq.	Percent	Cum.
Di sagree Neutral Agree	190 104 196	38.78 21.22 40.00	38. 78 60. 00 100. 00
Total	490	100.00	

Ordinal logit: the setup

 	Depende variable ol ogity_or teration 0: teration 1: teration 2: teration 3: teration 4: rdered logist	rdinal x1 x2 log likelih log likelih log likelih log likelih log likelih	dependent variable(s) x3 x4 x5 x6 x ood = -520.74 ood = -475.83 ood = -458.82 ood = -458.33 ood = -458.33	9694 3683 2354 8223	Number LR chi Prob >		490 124. 83 0. 0000	different than zero.
L Logit coefficients	og likelihood y_ordinal	l = -458.381 4 Coef.	45 Std. Err.	Z	Pseudo P> z	P R2 =	0. 1198	
are in log-odds units and cannot be read as regular OLS coefficients. To interpret you need to estimate the predicted	x1 x2 x3 x4 x5 x6 x7	. 220828 0543527 . 1066394 . 2247291 2920978 . 0034756 1. 566211	. 0958182 . 0899153 . 0925103 . 0913585 . 0910174 . 0860736 . 1782532	2. 30 -0. 60 1. 15 2. 46 -3. 21 0. 04 8. 79	0. 021 0. 546 0. 249 0. 014 0. 001 0. 968 0. 000	. 0330279 2305834 0746775 . 0456697 4704886 . 1652255 1 216841	. 4086282 . 1218779 . 2879563 . 4037885 113707 . 1721767 1. 915581	
probabilities of Y=1 (see next page)	/cut1 /cut2	5528058 . 5389237	. 103594 . 1027893			7558463 . 3374604	3497654 . 740387	
Ancillary parameters to define the changes among categories (see next page) Test the hypothesis that each coefficient is different from 0. To reject this, the t-value has to be higher than 1.96 (for a 95% confidence). If this is the case then you can say that the variable has a significant influence on your dependent variable (y). The higher the two variable has a significant influence or your dependent variable.						coefficient is different from 0. To reject this, the p-value has to be lower than 0.05 (95%, you could choose also an alpha of 0.10), if this is the case then you can say		

Ordinal logit: predicted probabilities

Following Hamilton, 2006, p.279, ologit estimates a score, S, as a linear function of the X's:

 $S = 0.22X_1 - 0.05X_2 + 0.11X_3 + 0.22X_4 - 0.29X_5 + 0.003X_6 + 1.57X_7$

Predicted probabilities are estimated as:

$$\begin{split} P(y_ordinal="disagree") &= P(S + u \le _cut1) \\ P(y_ordinal="neutral") &= P(_cut1 < S + u \le _cut2) = P(-0.5528058 < S + u \le 0.5389237) \\ P(y_ordinal="agree") &= P(_cut2 < S + u) \\ &= P(0.5389237 < S + u) \end{split}$$

To estimate predicted probabilities type predict right after ologit model. Unlike logit, this time you need to specify the predictions for all categories in the ordinal variable (y_ordinal), type:

```
predict disagree neutral agree
```

Ordinal logit: predicted probabilities

To read these probabilities, as an example, type

browse country disagree neutral agree if year==1999

In 1999 there is a 62% probability of 'agreement' in Australia compared to 58% probability in 'disagreement' in Brazil while Denmark seems to be quite undecided.

country	disagree	neutral	agree
Australia	.1700809	.2090298	.6208892
Austria	.17576	.2127421	.6114978
Belgium	.3058564	.2617683	.4323753
Botswana	.1215602	.1703741	.7080657
Brazil	.5808533	.2241725	.1949743
Bulgaria	.3134856	.2628762	.4236383
Burundi	.5940011	.2193996	.1865993
Canada	.1627286	.2039865	.6332849
Chile	.1998139	.2267881	.5733979
Denmark	.3604209	.2663039	.3732751

Predicted probabilities and marginal effects

For the latest procedure see the following document:

http://dss.princeton.edu/training/Margins.pdf

The procedure using prvalue in the following pages does not work with Stata 13.

Predicted probabilities: using prvalue

After runing ologit (or logit) you can use the command prvalue to estimate the probabilities for each event.

```
Prvalue is a user-written command, if you do not have it type findit spost, select
spost9_ado from http://www.indiana.edu/~jslsoc/stata and click on "(click
here to install)"
```

If you type prvalue without any option you will get the probabilities for each category when all independent values are set to their mean values.

```
. prvalue
ologit: Predictions for y_ordinal
Confidence intervals by delta method
                               95% Conf. Interval
    Pr(y=Di sagree | x): 0.3627 [ 0.3159,
                                           0.40941
    Pr(y=Neutral |x): 0.2643
                             0.2197
                                           0.3090]
     Pr(y=Agree|x):
                     0.3730
                             0.3262
                                           0. 4198]
                       x2
                                   х3
                                              x4
                                                          x5
                                                                      x6
                                                                                 x7
           x1
     2.0020408 -8.914e-10 -1.620e-10 -1.212e-10 2.539e-09 -9.744e-10 -6.040e-10
X=
```

You can also estimate probabilities for a particular profile (type help prvalue for more details).

```
. prvalue , x(x1=1 x2=3 x3=0 x4=-1 x5=2 x6=2 x6=9 x7=4)
```

ologit: Predictions for y_ordinal

Confidence intervals by delta method

	Pr(y=Disagree x): 0.0029 Pr(y=Neutral x): 0.0055 Pr(y=Agree x): 0.9916						55	
x=		x2 3					x7 4	

For more info go to: http://www.ats.ucla.edu/stat/stata/dae/probit.htm

Predicted probabilities: using prvalue

If you want to estimate the impact on the probability by changing values you can use the options save and dif (type help prvalue for more details)

. prvalue , x(x1=1) ologit : Prediction Confidence interva	s for y_ordinal	Probabilities when x1=1 and all other independent variables are held at their mean values. Notice the save option.						
Pr(y=Disagree Pr(y=Neutral : Pr(y=Agree x)	95% Conf. Interval x): 0.3837 [0.3098, 0.4576] x): 0.2641 [0.2195, 0.3087] : 0.3522 [0.2806, 0.4238]							
x= x1 1 -8	x2 x3 x4 3. 914e-10 -1. 620e-10 -1. 212e-10 2. 5	x5 x6 x7 39e-09 -9. 744e-10 -6. 040e-10						
ologit: Change in	 prvalue, x(x1=2) dif probabilities when x1=2 and all other independent variables are held at their mean 							
Confidence interva Pr(y=Disagree Pr(y=Neutral : Pr(y=Agree x)	Current Saved Change 95% CI x): 0.3627 0.3837 -0.0210 [-0.07 x): 0.2643 0.2641 0.0003 [-0.00	26, 0.0031]						
Current= Saved= Diff=	x1 x2 x3 x4 2 -8.914e-10 -1.620e-10 -1.212e-10 1 -8.914e-10 -1.620e-10 -1.212e-10 1 0 0 0							
	Here you can see the impact of x1 when it changes from 1 to 2.							
NOTE : You can do the same with logit or probit models	For example, the probability of y=Agree goes from 35% to 37% when x1 changes from 1 to 2 (and all other independent variables are held at their constant mean values.							

Useful links / Recommended books

- DSS Online Training Section http://dss.princeton.edu/training/
- UCLA Resources to learn and use STATA http://www.ats.ucla.edu/stat/stata/
- DSS help-sheets for STATA http://dss/online_help/stats_packages/stata/stata.htm
- Introduction to Stata (PDF), Christopher F. Baum, Boston College, USA. "A 67-page description of Stata, its key features and benefits, and other useful information." <u>http://fmwww.bc.edu/GStat/docs/StataIntro.pdf</u>
- STATA FAQ website http://stata.com/support/faqs/
- Princeton DSS Libguides http://libguides.princeton.edu/dss

Books

- Introduction to econometrics / James H. Stock, Mark W. Watson. 2nd ed., Boston: Pearson Addison Wesley, 2007.
- Data analysis using regression and multilevel/hierarchical models / Andrew Gelman, Jennifer Hill. Cambridge ; New York : Cambridge University Press, 2007.
- Econometric analysis / William H. Greene. 6th ed., Upper Saddle River, N.J. : Prentice Hall, 2008.
- Designing Social Inquiry: Scientific Inference in Qualitative Research / Gary King, Robert O. Keohane, Sidney Verba, Princeton University Press, 1994.
- Unifying Political Methodology: The Likelihood Theory of Statistical Inference / Gary King, Cambridge University Press, 1989
- Statistical Analysis: an interdisciplinary introduction to univariate & multivariate methods / Sam Kachigan, New York : Radius Press, c1986
- Statistics with Stata (updated for version 9) / Lawrence Hamilton, Thomson Books/Cole, 2006